Blind Pilot Decontamination

Ralf R. Müller

Professor for Digital Communications
Friedrich-Alexander University Erlangen-Nuremberg

Adjunct Professor for Wireless Networks
Norwegian University of Science and Technology

joint work with

Laura Cottatellucci Mikko Vehkaperä
Institute Eurecom, France Aalto University, Finland

9-Jun-2013

This work was supported in part by the FP7 project

("HARP")
Massive MIMO

Massive MIMO mimics the idea of spread spectrum.

- **Spread spectrum:**
 - Massive use of bandwidth
Massive MIMO

Massive MIMO mimics the idea of spread spectrum.

- Spread spectrum:
 - Massive use of \textit{bandwidth}
 - Large processing gain
Massive MIMO mimics the idea of spread spectrum.

- **Spread spectrum:**
 - Massive use of *bandwidth*
 - Large processing gain

- **Massive MIMO:**
 - Massive use of *antenna elements*
Massive MIMO mimics the idea of spread spectrum.

- **Spread spectrum:**
 - Massive use of *bandwidth*
 - Large processing gain

- **Massive MIMO:**
 - Massive use of *antenna elements*
 - Large array gain
Massive MIMO mimics the idea of spread spectrum.

- **Spread spectrum:**
 - Massive use of *bandwidth*
 - Large processing gain

- **Massive MIMO:**
 - Massive use of *antenna elements*
 - Large array gain

Both systems can operate in arbitrarily strong noise and interference.
Introduction

Uplink (Reverse Link) System Model

\[R \gg T \quad L \sim T \]
For T transmit antennas and R receive antennas, even for a static channel, RT channel coefficients must be estimated.

- **Linear channel estimation:**
 - The array gain, can be utilized for data detection, but **not** for channel estimation.
For T transmit antennas and R receive antennas, even for a static channel, RT channel coefficients must be estimated.

- **Linear channel estimation:**
 - The array gain, can be utilized for data detection, but **not** for channel estimation.
 - Channel estimation ultimately limits performance.
Pilot (De-)Contamination

For T transmit antennas and R receive antennas, even for a static channel, RT channel coefficients must be estimated.

- **Linear** channel estimation:
 - The array gain, can be utilized for data detection, but **not** for channel estimation.
 - Channel estimation ultimately limits performance.

- **General** channel estimation:
 - The array gain can be utilized for both channel estimation and data detection.
For T transmit antennas and R receive antennas, even for a static channel, RT channel coefficients must be estimated.

- **Linear** channel estimation:
 - The array gain, can be utilized for data detection, but **not** for channel estimation.
 - Channel estimation ultimately limits performance.

- **General** channel estimation:
 - The array gain can be utilized for both channel estimation and data detection.
 - Performance is **not** limited by channel estimation.
Pilot (De-)Contamination

For T transmit antennas and R receive antennas, even for a static channel, RT channel coefficients must be estimated.

- **Linear** channel estimation:
 - The array gain, can be utilized for data detection, but **not** for channel estimation.
 - Channel estimation ultimately limits performance.

- **General** channel estimation:
 - The array gain can be utilized for both channel estimation and data detection.
 - Performance is **not** limited by channel estimation.

How to estimate a massive MIMO channel appropriately?
We propose an uplink (reverse link)-based approach:

For a reciprocal channel, it suffices to utilize the array gain on the uplink.

Once, we have reliably detected the uplink data, we can use all uplink data to estimate the downlink (forward link) channel to high accuracy.
Blind Interference Rejection

This topic was well studied in the 1990s in context of spread-spectrum, see e.g. U. Madhow: "Blind adaptive interference suppression for direct sequence CDMA,“ Proceedings of the IEEE, Oct. 1998.
Blind Interference Rejection

This topic was well studied in the 1990s in context of spread-spectrum, see e.g. U. Madhow: "Blind adaptive interference suppression for direct sequence CDMA,“ Proceedings of the IEEE, Oct. 1998.

Idea:
- The signal of interest and the interference are almost orthogonal.
Blind Interference Rejection

This topic was well studied in the 1990s in context of spread-spectrum, see e.g. U. Madhow: "Blind adaptive interference suppression for direct sequence CDMA," Proceedings of the IEEE, Oct. 1998.

- Idea:
 - The signal of interest and the interference are almost orthogonal.
 - We need not know the channel coefficients of the interference, but only the subspace the interference occupies.
Blind Interference Rejection

This topic was well studied in the 1990s in context of spread-spectrum, see e.g. U. Madhow: "Blind adaptive interference suppression for direct sequence CDMA," Proceedings of the IEEE, Oct. 1998.

- Idea:
 - The signal of interest and the interference are almost orthogonal.
 - We need not know the channel coefficients of the interference, but only the subspace the interference occupies.

- Implementation:
 - Project onto the orthogonal complement of the interference subspace.
Blind Interference Rejection

This topic was well studied in the 1990s in context of spread-spectrum, see e.g. U. Madhow: "Blind adaptive interference suppression for direct sequence CDMA,“ Proceedings of the IEEE, Oct. 1998.

Idea:
- The signal of interest and the interference are almost orthogonal.
- We need not know the channel coefficients of the interference, but only the subspace the interference occupies.

Implementation:
- Project onto the orthogonal complement of the interference subspace.

How to find the interference subspace or its orthogonal complement?
Matched Filter Projection

Let us start the considerations with solely white noise and a SIMO system.
Matched Filter Projection

Let us start the considerations with solely white noise and a SIMO system.

- Let \(y_c \) be the column vector received at the receive array at time \(c \) and \(Y = [y_1, \ldots, y_C] \) with \(C \) denoting the coherence time.

\[
\begin{align*}
&\text{We would like to find a linear filter } m, \text{ such that } m^\dagger Y \text{ has high SNR.} \\
&\text{Then, we find } m = \text{argmax}_{m_0} ||m_0^\dagger Y||^2_2 = \text{argmax}_{m_0} m_0^\dagger YY^\dagger m_0 m_0^\dagger m_0 \\
&\text{is that eigenvector of } YY^\dagger \text{ that corresponds to the largest eigenvalue.}
\end{align*}
\]
Matched Filter Projection

Let us start the considerations with solely white noise and a SIMO system.

- Let \mathbf{y}_c be the column vector received at the receive array at time c and $\mathbf{Y} = [\mathbf{y}_1, \ldots, \mathbf{y}_C]$ with C denoting the coherence time.
- We would like to find a linear filter \mathbf{m}, such that $\mathbf{m}^\dagger \mathbf{Y}$ has high SNR.
Let us start the considerations with solely white noise and a SIMO system.

- Let \mathbf{y}_c be the column vector received at the receive array at time c and $\mathbf{Y} = [\mathbf{y}_1, \ldots, \mathbf{y}_C]$ with C denoting the coherence time.
- We would like to find a linear filter \mathbf{m}, such that $\mathbf{m}^\dagger \mathbf{Y}$ has high SNR.
- Then, we find

$$\mathbf{m} = \arg\max_{\mathbf{m}_0} \frac{||\mathbf{m}_0^\dagger \mathbf{Y}||^2}{||\mathbf{m}_0||^2} = \arg\max_{\mathbf{m}_0} \frac{\mathbf{m}_0^\dagger \mathbf{Y} \mathbf{Y}^\dagger \mathbf{m}_0}{\mathbf{m}_0^\dagger \mathbf{m}_0}$$

is that eigenvector of $\mathbf{Y} \mathbf{Y}^\dagger$ that corresponds to the largest eigenvalue.
Next, consider solely white noise and a MIMO system with $T > 1$ transmit antennas.
Next, consider solely white noise and a MIMO system with $T > 1$ transmit antennas.

- Now, we look for a basis \mathbf{M} of the T-dimensional subspace containing the signal of interest.
Next, consider solely white noise and a MIMO system with $T > 1$ transmit antennas.

- Now, we look for a basis \mathbf{M} of the T-dimensional subspace containing the signal of interest.
- We find it by an eigenvalue decomposition of $\mathbf{Y}\mathbf{Y}^\dagger$ picking those eigenvectors which correspond to the T largest eigenvalues.
Next, consider solely white noise and a MIMO system with $T > 1$ transmit antennas.

- Now, we look for a basis \mathbf{M} of the T-dimensional subspace containing the signal of interest.
- We find it by an eigenvalue decomposition of $\mathbf{Y}\mathbf{Y}^\dagger$ picking those eigenvectors which correspond to the T largest eigenvalues.
- We now project the received signal onto that subspace

$$\mathbf{Y}' = \mathbf{M}^\dagger \mathbf{Y}$$

and dismiss all noise components outside that subspace.
Next, consider solely white noise and a MIMO system with $T > 1$ transmit antennas.

- Now, we look for a basis \mathbf{M} of the T-dimensional subspace containing the signal of interest.
- We find it by an eigenvalue decomposition of $\mathbf{Y} \mathbf{Y}^\dagger$ picking those eigenvectors which correspond to the T largest eigenvalues.
- We now project the received signal onto that subspace

$$\mathbf{Y}' = \mathbf{M}^\dagger \mathbf{Y}$$

and dismiss all noise components outside that subspace.
- By the massive MIMO philosophy, i.e. $T \ll R$, this subspace is much smaller than the full space.
Next, consider solely white noise and a MIMO system with $T > 1$ transmit antennas.

- Now, we look for a basis \mathbf{M} of the T-dimensional subspace containing the signal of interest.
- We find it by an eigenvalue decomposition of $\mathbf{Y}\mathbf{Y}^\dagger$ picking those eigenvectors which correspond to the T largest eigenvalues.
- We now project the received signal onto that subspace

$$\mathbf{Y}' = \mathbf{M}^\dagger \mathbf{Y}$$

and dismiss all noise components outside that subspace.

- By the massive MIMO philosophy, i.e. $T \ll R$, this subspace is much smaller than the full space.

We have utilized the array gain without estimating the channel.
Consider now the general case (noise, interference and a MIMO system with $T > 1$ transmit antennas and $R \gg T$ receive antennas).
Consider now the general case (noise, interference and a MIMO system with $T > 1$ transmit antennas and $R \gg T$ receive antennas).

While white noise is small in all components if

$$SNR \gg \frac{T}{R},$$

the interference typically concentrates in few signal dimensions where it is strong.
Matched Filter Projection III

Consider now the general case (noise, interference and a MIMO system with \(T > 1 \) transmit antennas and \(R \gg T \) receive antennas).

- While white noise is small in all components if
 \[
 \text{SNR} \gg \frac{T}{R},
 \]
 the interference typically concentrates in few signal dimensions where it is strong.

How to distinguish the signal of interest from interference?
Consider power-controlled hand-off and perfect received power control.

Interfering signals cannot be stronger than signals of interest, i.e. $P \geq I$.

Most interfering signals are noticeably weaker than the signals of interest. For vanishing load $\alpha = T / R \to 0$, the signals of interest can be separated from the interference.

What if the load is small, but not vanishing?
Power Controlled Hand-Off

Consider power-controlled hand-off and perfect received power control.

Interfering signals cannot be stronger than signals of interest, i.e. \(P \geq I \).
Consider power-controlled hand-off and perfect received power control.

- Interfering signals cannot be stronger than signals of interest, i.e. $P \geq I$.
- Most interfering signals are noticeably weaker than the signals of interest.
Power Controlled Hand-Off

Consider power-controlled hand-off and perfect received power control.

- Interfering signals cannot be stronger than signals of interest, i.e. $P \geq I$.
- Most interfering signals are noticeably weaker than the signals of interest.
- For vanishing load $\alpha = T/R \to 0$, the signals of interest can be separated from the interference.
Consider power-controlled hand-off and perfect received power control.

- Interfering signals cannot be stronger than signals of interest, i.e. $P \geq I$.
- Most interfering signals are noticeably weaker than the signals of interest.
- For vanishing load $\alpha = T/R \rightarrow 0$, the signals of interest can be separated from the interference.

What if the load is small, but not vanishing?
Empirical Eigenvalue Distribution

\[p_\lambda(\lambda) \]

\[R = 300 \]
\[T = 10 \]
\[C = 1000 \]
\[L = 2 \]
\[W = 1000 \]
\[P = 100 \]
\[I = 25 \]
Eigenvalue Spread

Assume an i.i.d. channel matrix and \(R \gg T \to \infty \).

The eigenvalues of the signal of interest are confined in an interval centered at the received power \(P \) with width

\[
4P \sqrt{\frac{T}{R} + \frac{T}{C}}.
\]

For massive MIMO, the width is quite small.
Eigenvalue Spread

Assume an i.i.d. channel matrix and $R \gg T \to \infty$.

The eigenvalues of the signal of interest are confined in an interval centered at the received power P with width

$$4P\sqrt{\frac{T}{R} + \frac{T}{C}}.$$

For massive MIMO, the width is quite small.

The eigenvalues of the sole interference spread around the interference power (which for sake of simplicity is assumed to be unique). They are confined in an interval centered at the interference power I with width

$$4I\sqrt{\frac{LT}{R} + \frac{LT}{C}},$$

where L denotes the number of interfering cells.

For massive MIMO, the width is quite small.
Eigenvalue Separation

The two intervals do not overlap if

$$\frac{P}{I} > \frac{1 + 2\sqrt{\frac{LT}{R} + \frac{LT}{C}}}{1 - 2\sqrt{\frac{T}{R} + \frac{T}{C}}}.$$
The two intervals do not overlap if

\[
P \frac{I}{l} > \frac{1 + 2\sqrt{\frac{LT}{R}} + \frac{LT}{C}}{1 - 2\sqrt{\frac{TR}{R} + \frac{TC}{C}}}.\]

If the two intervals do not overlap, we can totally reject the interference by means of eigenvalue decomposition.
Eigenvalue Separation

The two intervals do not overlap if

\[\frac{P}{I} > \frac{1 + 2\sqrt{\frac{LT}{R} + \frac{LT}{C}}}{1 - 2\sqrt{\frac{T}{R} + \frac{T}{C}}}. \]

If the two intervals do not overlap, we can totally reject the interference by means of eigenvalue decomposition.

For finite number of receive antennas, the interval boundaries are *not sharp*, but have exponentially decaying tails.
Simulation Results

BER vs. Array Size

\[T = 3 \]
\[C = 1000 \]
\[L = 2 \]
\[\text{SNR} = -10 \text{dB} \]

1 pilot symbol per transmit antenna and cell
BER vs. Power Margin

\[I/P \]

uncoded BER

threshold for no overlap

conv. method of Marzetta

proposed subspace method

\[R = 200 \]
\[T = 2 \]
\[C = 400 \]
\[L = 2 \]
\[W = 1 \]
\[P = 0.1 \]

1 (-) or 10 (- -) pilot symbols per transmit antenna and cell
Power Margin

How to guarantee a sufficient power margin between the signal of interest and the interference?
How to guarantee a sufficient power margin between the signal of interest and the interference?

Two antennas per user.
How to guarantee a sufficient power margin between the signal of interest and the interference?

Two antennas per user.

If a user experiences equally good channel conditions to several base stations/access points, the user forms a beam that favors one of the base stations/access points over the others.
How to guarantee a sufficient power margin between the signal of interest and the interference?

Two antennas per user.

If a user experiences equally good channel conditions to several base stations/access points, the user forms a beam that favors one of the base stations/access points over the others.

If the power margin is sufficient without beam forming, the user can use the two antennas for spatial multiplexing.
How to guarantee a sufficient power margin between the signal of interest and the interference?

Two antennas per user.

If a user experiences equally good channel conditions to several base stations/access points, the user forms a beam that favors one of the base stations/access points over the others.

If the power margin is sufficient without beam forming, the user can use the two antennas for spatial multiplexing.

Pro: A sufficient power margin can be established (with high probability).

Con: Users at cell boundaries may suffer from reduced data rate.
Conclusions

- An algorithm for pilot decontamination was proposed.
Conclusions

- An algorithm for pilot decontamination was proposed.
- The algorithm works well under the simulated conditions.
Conclusions

- An algorithm for pilot decontamination was proposed.
- The algorithm works well under the simulated conditions.
- Pilot contamination is not a fundamental effect, but an artefact of linear channel estimation.
Conclusions

- An algorithm for pilot decontamination was proposed.
- The algorithm works well under the simulated conditions.
- Pilot contamination is not a fundamental effect, but an artefact of linear channel estimation.
- The algorithm requires real-time eigenvalue or singular value decompositions.

